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Abstract

Solving approximate energy flow partial differential equations for structural elements can be done analytically (energy

flow analysis—EFA) or using finite element approximations (energy finite element method—EFEM). In this paper, energy

equations are solved using the spectral element method (SEM). This new approach, which is called the energy spectral

element method (ESEM), can be applied to predict the distribution of the energy flow and energy density of built-up

structures at high frequencies. Energy spectral element method is a matrix formulation based on the general solution of the

partial differential equations for energy density in structural vibrations such as longitudinal and transversal vibrations of

frames. A spectral energy element can be shown to be equivalent to an infinite number of energy finite elements. In this

work, numerical models involving coupled rods and beams are generated by energy spectral element method, and the

results obtained are compared with energy densities computed from the displacement fields predicted by the SEM to solve

the conventional boundary value problem.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Acoustic and vibrational energies are frequently borne by waveguides such as rods and beams. Many built-
up structures include this type of component, which acts as an important vibration and noise transmission
path. A review of the literature indicates that although structural dynamic analysis at low frequency has been
developed extensively, there is a demand for predictive tools able to solve this problem in mid- and high-
frequency ranges. Traditional numerical methods such as the finite element method (FEM) and the boundary
element method (BEM) have been used to solve structural dynamic problems. However, in complex systems,
they have an inherent characteristic that generates large model sizes at high frequencies. Therefore, the mid-
and high-frequency behavior of structures is still an active subject of investigation.

A vast amount of research has been dedicated to the high-frequency range, and one of the techniques most
commonly used is statistical energy analysis (SEA), which was first presented in the early 1960s [1]. In SEA,
the structure is divided into a set of subsystems that interact through the exchange of energy. SEA is aimed at
predicting the vibrational energy level in each subsystem. Once computed, these energies can be used to
estimate acceleration and stress levels in the subsystems. However, the spatial variation of the response within
each subsystem cannot be obtained, since SEA provides one energy level for each subsystem. For purposes of
design at high frequencies, it would be useful to know the spatial vibrational behavior of the entire structure.

Based on the analogy between mechanical energy flow and thermal energy flow, Wohlever and Bernhard [2]
proposed the energy flow analysis (EFA). This is an approximated analytical energy solution for rods and
beams which requires much fewer parameters and less computational effort than that required to model the
exact analytical energy solution using displacement formulations. The governing equations of EFA use the
proportionality relationship between power flow (intensity) and the gradient of the energy density by
establishing an energy balance on a differential control volume. Cho and Bernhard [3] used EFA governing
equations and coupling relationships to predict the spatial and frequency-averaged vibrational response of
frame structures. Coupling relationships were used to describe the energy transfer for different types of joints,
such as beam–beam, rod–beam, plate–plate, and structure–acoustic cavity coupling. This approach was also
extended by Bouthier and Bernhard to membranes [4] and plates [5], and by Bitsie and Bernhard to
vibroacoustic problems [6]. All these studies used analytical and finite element approximation solutions of
partial energy differential equations to predict spatial and frequency-averaged vibration behavior in order to
identify how vibrations propagate through a built-up structure at high frequencies.

Developed by Doyle [7], the spectral element method (SEM) is the frequency domain exact analytical
solution of the wave equation, using displacement formulation, tailored with the matrix ideas of the FEM. In
this method, built-up structures with geometrically uniform members can be represented with a single spectral
beam element, significantly reducing the total number of degrees of freedom compared with other methods. It
can be shown that one spectral element is equivalent to an infinite number of finite elements [7]. In addition,
the wave propagation in the members is accurately expressed because the exact solution of rods and beams in
the frequency domain is obtained. However, there are still difficulties to model nonuniform members and to
apply arbitrary boundary conditions.

This paper presents a new application of the SEM, which was originally proposed by Santos [8] and called
energy spectral element method (ESEM). It consists basically in applying the same matrix methodology of the
spectral element to the EFA governing equations for rods and beams. Similarly to EFA, the ESEM requires a
joint element [3] to connect two or more structural elements, while in SEM this is already included in the
formulation. Compared to similar displacement formulations, it has the advantage of modeling only energy
variations and, since energy variations are smoother than displacement variations, it is efficient over a large
frequency range. It is also able to calculate high-frequency energy density for the entire space domain of the
structural member with the same accuracy, provided there is enough modal density in the frequency band of
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interest [9]. Therefore, the method can address the high-frequency range, where displacement methods are too
expensive and the SEA solution does not yield the spatial behavior with sufficient detail. The results obtained
by the proposed method are verified using the energy density computed from the exact analytical solution of
the wave equation obtained by using a displacement SEM formulation.

The examples treated in this paper use the elementary rod theory and the Bernoulli–Euler beam theory to
formulate a spectral frame element for the planar vibration problem. The main differences between the results
obtained with SEM and ESEM stem from the validity limits of ESEM formulation and coupling relationships
in the frequency band of interest.

2. Spectral element method

The SEM is a matrix methodology similar to the FEM for handling structural wave propagation
problems. The frequency domain dynamic stiffness relation for the spectral element is established via dynamic
shape functions between element nodes, which are the exact displacement distributions of the theory
considered.

In this paper, the fundamental equation is derived for a longitudinal wave in a rod. Fig. 1 shows an elastic
two-noded rod element with a uniform cross-section subjected to dynamic forces at both ends. Considering
that rod deformation depends on the undamped elementary rod theory, an equilibrium equation and
boundary conditions at both ends are obtained as

ES
d2u

dx2
� rS

d2u

dt2
¼ 0, (1)

ES
du

dx

� �
1

¼ F1; ES
du

dx

� �
2

¼ F2, (2)

where E, S, and r are Young’s modulus, the cross-section area, and the mass density, respectively; u is the
longitudinal displacement, which is a function of the spatial coordinate x and time t; F1 and F2 are the
external axial forces; and subscripts 1 and 2 denote values at the element rod node numbers 1 and 2,
respectively.

By applying the Fourier transform to both sides of Eq. (1), its spectral representation can be written as

ES
d2bu
dx2
þ o2rSbu ¼ 0, (3)

where b denotes that the function is Fourier transformed and o is the circular frequency. A damping term is
introduced into the rod formulation by using a complex Young’s modulus. It is defined as Ec ¼ Eð1þ iZÞ,
where Z is the hysteretic structural damping loss factor and i ¼

ffiffiffiffiffiffiffi
�1
p

. The general solution to Eq. (3) can be
expressed using arbitrary constants A and B as

buðxÞ ¼ A e�ikx þ B e�ikðL�xÞ, (4)

where L is the rod element length, k is the complex wavenumber given by

k ¼
o
c
, (5)
u1 u2

F1

1 2

L

^ ^

^ F2
^

Fig. 1. Nodal displacements and forces for two-node rod elements under axial loading.
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and c is the phase speed in the rod,

c ¼

ffiffiffiffiffiffi
Ec

r

s
. (6)

The constants A and B in Eq. (4) are determined by the boundary conditions of the rod. The displacement end
conditions for the two-noded element are

buð0Þ � bu1 ¼ Aþ B e�ikL, (7)

buðLÞ � bu2 ¼ A e�ikL þ B, (8)

where bu1 and bu2 are the nodal displacements at the rod element node numbers 1 and 2, respectively.
By rewriting Eqs. (7) and (8) in a matrix form and solving for A and B in terms of nodal displacements,
one has

A

B

� �
¼

1 e�ikL

e�ikL 1

" #�1 bu1bu2

( )
. (9)

From Eqs. (2) the loads at the rod element nodes are

bF1 ¼ �bF ð0Þ ¼ �ES½�ikAþ ikB e�ikL�, (10)

bF2 ¼ bF ðLÞ ¼ ES½�ikA e�ikL þ ikB�, (11)

which can be rewritten in matrix form as

bF1bF2

( )
¼ ES

ik �ik e�ikL

�ike�ikL ik

" #
A

B

� �
. (12)

Substituting Eq. (9) in Eq. (12), the dynamic stiffness matrix for the two-noded rod element, bKS, can be
obtained as

bF 1bF 2

( )
¼

ES

L

ikL

ð1� e�i2kLÞ

1þ e�i2kL �2 e�i2kL

�2 e�i2kL 1þ e�i2kL

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}bKS

bu1bu2

( )
. (13)

For harmonic excitation, the time-averaged energy density for longitudinal waves in a rod can be written as a
summation of the potential and kinetic energy densities,

hei ¼
1

4
ES

qbu
qx

qbun

qx

� �
þ

1

4
rS

qbu
qt

qbun

qt

� �
, (14)

where h i and � represent the time-averaged quantity and the complex conjugate, respectively. The time-
averaged energy flow for longitudinal waves in a rod is given by

hqi ¼
1

2
Re �bFqbun

qt

� �
, (15)

where Re is the real part of a complex number.
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A complete formulation for beams and other types of spectral elements can be found in Refs. [7,10]. Since
the SEM is based upon an exact solution of the wave equation, in this work it will be used as reference to
compare it with the distribution of energy density and energy flow calculated by the proposed ESEM method.
3. Energy spectral element method

The ESEM is obtained by applying the same matrix methodology of the spectral element to the governing
approximated energy equation for one-dimensional structural elements (i.e., rods and beams). The energy
balance in a one-dimensional differential element shows that the time rate of the change of energy inside the
element must be equal to the net energy flow through the element minus the power dissipated within the
element. The resulting energy balance can be written as [2]

qe

qt
¼ �

qq

qx
� pdiss, (16)

where e is the energy density per unit length, q is the energy flow, and pdiss is the power dissipated due to
internal damping. For steady-state conditions, the time derivative of energy density is zero.

It is common to consider that the time-averaged power dissipated inside a structure is proportional to the
local energy density [1], so

hpdissi ¼ Zohei. (17)
〈q1〉 〈q2〉

〈e2〉〈e1〉

1 2

L

Fig. 2. Nodal energy flows and energy densities for two-node elements borne by longitudinal waves.

F0ej�t

F0ej�t

A

A B

B

�in

�in

e1
(A) e2

(A)
e1 e(B)

Joint

Q = 0

1 2
3 4

ILA
�LL21

rLL11 rLL22

�LL12
1 2 ILB

(B)
2

Fig. 3. Two collinear coupling elements: (a) force–displacement model; (b) energy flow equivalent model; (c) semi-infinite rod joint

element model.
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For a finite structure, energy flow and energy density are related by [3]

hqi ¼ �
c2g

Zo
qhei
qx

, (18)

where hqi is the time-averaged energy flow, hei is the time-averaged energy density, and cg is the group speed of
the type of wave propagating in the structure. The expressions of group speed for longitudinal (rod) and
flexural (beam) waves are, respectively,

cgl ¼

ffiffiffiffiffiffiffiffiffi
EcS

rS

s
; cgf ¼ 2

o2EcI

rS

� 	1=4
. (19)

By substituting Eqs. (17) and (18) in Eq. (16), the approximate governing energy equations for one-
dimensional elements with a small structural damping loss factor (Z51) is obtained as

�
c2g

Zo
r2hei þ Zohei ¼ 0. (20)
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The general solution of Eq. (20) can be written as

hei ¼ H eZkx þG e�Zkx, (21)
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where L is the element length, and H and G are arbitrary constants determined by the boundary conditions.
It must be emphasized that the difference in this solution for longitudinal and flexural waves will be the
group speed.

Fig. 2 shows an elastic two-noded one-dimensional energy spectral element with uniform cross-section
subjected to energy flow hq1i and hq2i at the element nodes 1 and 2, respectively. By applying the energy
density boundary conditions at element nodes 1 and 2, the following equations are obtained:

he1i ¼ heð0Þi ¼ HþG, (22)

he2i ¼ heðLÞi ¼ H eZkL þG e�ZkL, (23)

which can be rewritten in matrix form and solved for H and G in terms of energy densities as

H

G

� �
¼

1 1

eZkL e�ZkL

� 	�1 he1i
he2i

( )
. (24)

Applying the energy flow end conditions at element nodes 1 and 2 results in

hq1i ¼ hqð0Þi ¼ �
c2g

Zo
½ZkH� ZkG�, (25)
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Fig. 10. Longitudinal energy: (a) density and (b) flow, and flexural energy: (c) density and (d) flow, obtained by ( ) ESEM and (—)

SEM for a two collinear coupled structure with f c ¼ 12:5 kHz.
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hq2i ¼ �hqðLÞi ¼
c2g

Zo
½ZkH eZkL � ZkG e�ZkL�, (26)

which can be rewritten in matrix form as

hq1i

hq2i

( )
¼

c2g

Zo

�Zk Zk

Zk eZkL �Zk e�ZkL

" #
H

G

� �
. (27)

By substituting Eq. (24) in Eq. (27) the one-dimensional spectral energy flow matrix, KE , is obtained as

hq1i

hq2i

( )
¼

cg

ð1� e2ZkLÞ

1þ e2ZkL �2 eZkL

�2 eZkL 1þ e2ZkL

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

KE

he1i

he2i

( )
. (28)
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4. Structural coupling model

Generally, built-up structures present discontinuities such as changes in material, geometry or structural
configurations which modify the wave propagation behavior (Fig. 3a). To account for these discontinuities,
additional energy coupling relationships need to be formulated and inserted at these connection points
(Fig. 3b). Joint elements can be obtained for any coupled structural elements, since the energy transmission
between them can be described in terms of power transmission and reflection coefficients [11]. The joint
elements used in this study were proposed by Cho [3], and are used here for the following structural coupling
types: rod–rod collinear, beam–beam collinear, and beam–beam at an arbitrary angle. However, only the
formulation for the rod–rod collinear coupling will be presented here; formulations for other one-dimensional
coupling joint elements can be obtained following a similar procedure.

The process of transmission and reflection of waves at a joint of a finite structure (Fig. 3b) can be described
locally by a semi-infinite rod joint model (Fig. 3c). There are two coincident nodes where, on the left-hand side
of the joint, node 1 is part of element A, and, on the right-hand side of the joint, node 2 is part of element B. In
this joint model, a left propagating wave (IB) incident upon the joint is partially reflected and partially
transmitted, and a right propagating wave (IA) incident upon the joint is also partially reflected and
transmitted. Therefore, the left propagating energy flow in rod A can be represented by the sum of the
contributions from the partially reflected right propagating wave in rod A and the partially transmitted left
0 2 4 6
0

0.2

0.4

0.6

0.8

1
x 10−4

<
q L

L
A

B
>

 [
W

]

Position [m]

0 2 4 6
0

2

4

6
x 10−4

<
q F

FA
B

>
 [

W
]

Position [m]

0 2 4 6

Position [m]

0 2 4 6

Position [m]

0 2 4 6

Position [m]

0 2 4 6

Position [m]

0

1

2

3
x 10−5

<
q L

FA
B

>
 [

W
]

0

1

2

3

4
x 10−5

<
q F

L
A

B
>

 [
W

]

0

0.2

0.4

0.6

0.8

1
x 10−4

<
q L

A
B

>
 [

W
]

0

2

4

6
x 10−4

<
q F

A
B

>
 [

W
]

Fig. 13. Energy flows: partial longitudinal from (a) longitudinal and (c) flexural wave; partial flexural from (b) flexural and

(d) longitudinal wave; total (e) longitudinal and (f) flexural obtained by ( ) ESEM and (—) SEM for a two coupled structure with 60�

for a 1/3-octave frequency band with f c ¼ 4:0 kHz.
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propagating wave in rod B. The right propagating energy flow in rod B can be represented by the sum of
contributions from the partially reflected left propagating wave in rod B and the partially transmitted right
propagating wave in rod A. Thus, the contributions of energy flow can be determined in terms of the power
transmission and reflection coefficients in each rod, and the net energy flow away from the joint at each node
can be expressed as

hq1i
� ¼ rLL11hq1i

þ þ tLL21hq2i
þ, (29)

hq2i
� ¼ tLL12hq1i

þ þ rLL22hq2i
þ, (30)

where tLLij is the longitudinal wave power transmission coefficient from node i to node j and rLLii is the
longitudinal wave power reflection coefficient at node i. As a signal convention, energy flow incident upon the
joint is positive and the reverse is negative, based on the one-dimensional reciprocity relationship tLLij ¼ tLLji

and rLLii ¼ rLLjj , which means that only one set of power coefficients needs to be calculated. Since this joint
model is conservative tLLij þ rLLii ¼ 1, and the addition of Eqs. (29) and (30) produces the joint energy flow
balance relationship,

hq1i
þ � hq1i

� ¼ hq2i
þ � hq2i

�. (31)
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Fig. 14. Energy densities: partial longitudinal from (a) longitudinal and (c) flexural wave; partial flexural from (b) flexural and

(d) longitudinal wave; total (e) longitudinal and (f) flexural obtained by ( ) ESEM and (—) SEM for a two coupled structure with 60�
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The resulting energy flow at the joint is the difference between the negative (moving out of the joint) and
positive (moving into the joint) energy flows, which can be written in terms of the joint nodes 1 and 2,
respectively, as

hq1i ¼ hq1i
þ � hq1i

�, (32)

hq2i ¼ hq2i
þ � hq2i

�. (33)

From Eqs. (18) and (21) it is possible to show that Eqs. (32) and (33) become,

hq1i ¼ cglahe1i
þ � cglahe1i

�, (34)

hq2i ¼ cglbhe2i
þ � cglbhe2i

�. (35)

Substituting Eqs. (29) and (34) in Eq. (32), and Eqs. (30) and (35) in Eq. (33), the following relationships are
obtained:

hq1i ¼ cglað1� rLL11Þhe1i
þ � cglbtLL21he2i

þ, (36)

hq2i ¼ �cglatLL21he1i
þ þ cglbð1� rLL22Þhe2i

þ. (37)
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Fig. 15. Energy flows: partial longitudinal from (a) longitudinal and (c) flexural wave; partial flexural from (b) flexural and

(d) longitudinal wave; total (e) longitudinal and (f) flexural obtained by (- - -) ESEM and (—) SEM for a two coupled structure with 60�

for a 1/3-octave frequency band with f c ¼ 12:5 kHz.
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Eqs. (36) and (37) can be rewritten in matrix form as

hq1i

hq2i

( )
¼

cglað1� rLL11Þ �cglbtLL21

�cglatLL21 cglbð1� rLL22Þ

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

P

he1i
þ

he2i
þ

( )
. (38)

The values of energy density at the joint nodes can also be expressed in terms of energy density components
moving in the positive and negative directions. Hence, the total energy densities at the coupling nodes are given by

he1i ¼ he1i
þ þ he1i

�, (39)
Fig. 16. New graphic representation of Fig. 15.
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he2i ¼ he2i
þ þ he2i

�. (40)

The nodal values of energy density, Eqs. (39) and (40), must also be expressed in terms of the relationship given by
Eqs. (29), (30), and (35). Thus, the new relationships for total energy densities are

he1i ¼ ð1þ rLL11Þhe1i
þ þ

cglb

cgla
tLL21he2i

þ, (41)

he2i ¼
cgla

cglb
tLL12he1i

þ þ ð1þ rLL22Þhe2i
þ. (42)

Eqs. (41) and (42) can be rewritten in matrix form and solved for he1i
þ and he2i

þ in terms of he1i and he2i as

he1i
þ

he2i
þ

( )
¼

1þ rLL11
cglb

cgla
tLL21

cgla

cglb
tLL12 1þ rLL22

2664
3775
�1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
E�1

he1i

he2i

( )
. (43)
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Fig. 18. Energy densities: partial longitudinal from (a) longitudinal and (c) flexural wave; partial flexural from (b) flexural and

(d) longitudinal wave; total (e) longitudinal and (f) flexural obtained by ( ) ESEM and (—) SEM for the AB branch of three

coupled structure with �60� for a 1/3-octave frequency band with f c ¼ 4:0 kHz.
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By substituting Eq. (43) in Eq. (38) and applying the reciprocity relationship, the rod–rod collinear coupling
relationship between the nodal values of energy flow in terms of energy density is obtained as

hq1i

hq2i

( )
¼

tLL12

2rLL11

cgla �cglb

�cgla cglb

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

J

he1i

he2i

( )
. (44)

A similar equation can be obtained for the beam–beam collinear coupling relationship by replacing in Eq. (44) the
longitudinal power transmission and reflection coefficients for the flexural coefficients (tFFij and rFFii), and the rod
group speeds for the beam group speeds (cgfa and cgfb).

In order to obtain the global energy density system of equations for the rod–rod collinear coupling (Fig. 3b),
the joint element must be included at the connection and, from Eqs. (28) and (44), it can be written as

k
ðAÞ
11 k

ðAÞ
12 0 0

k
ðAÞ
21 k

ðAÞ
22 � cgla

tLL23

2rLL22

� �
cglb

tLL23

2rLL22

� �
0

0 cgla
tLL23

2rLL22

� �
k
ðBÞ
11 � cglb

tLL23

2rLL22

� �
k
ðBÞ
12

0 0 k
ðBÞ
21 k

ðBÞ
22

26666666664

37777777775

he1i

he2i

he3i

he4i

8>>><>>>:
9>>>=>>>; ¼

pin
0

0

0

8>>><>>>:
9>>>=>>>;, (45)
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Fig. 19. Energy flows: partial longitudinal from (a) longitudinal and (c) flexural wave; partial flexural from (b) flexural and

(d) longitudinal wave; total (e) longitudinal and (f) flexural obtained by ( ) ESEM and (—) SEM for the AB branch of three

coupled structure with �60� for a 1/3-octave frequency band with f c ¼ 4:0kHz.
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where pin is the power input on the left end of element A, heni are the energy densities at the nodes n, and k
ðmÞ
ij

are the matrix elements of KE in Eq. (28), with the subscripts i and j indicating the energy spectral element
node numbers (i; j ¼ 1; 2) and the superscript ðmÞ indicating the element number.

5. Energetics in one-dimensional structural elements

In order to assess the accuracy of the proposed method, some examples with rod and beam structures are
analyzed.

5.1. Single elements

The one-dimensional structural model consists of a traction and flexural element A, with free–free
displacement boundary conditions and excited at the left end by a longitudinal and a flexural harmonic force,
one at a time, with a magnitude of F ¼ 1:0N (Fig. 4). The structure is made of aluminum (E ¼ 71:0GPa and
r ¼ 2700 kg=m3) with a cross section-area S ¼ 4� 10�4 m2 and inertia moment Izz ¼ 1:333� 10�8 m4. The
structure’s length is L ¼ 3:0m and the structural damping loss factor is Z ¼ 0:03.

The frequency-averaged longitudinal and flexural energy density and energy flow were calculated by ESEM
and SEM in a 1/3-octave frequency band with center frequency f c ¼ 4:0 kHz. With the exception of the
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Fig. 20. Energy densities: partial longitudinal from (a) longitudinal and (c) flexural wave; partial flexural from (b) flexural and

(d) longitudinal wave; total (e) longitudinal and (f) flexural obtained by ( ) ESEM and (—) SEM for the AC branch of three

coupled structure with 60� for a 1/3-octave frequency band with f c ¼ 4:0kHz.
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flexural energy flow (Fig. 5d) none of the other energies calculated by ESEM and SEM (Figs. 5a–c) match
exactly. A close examination of the longitudinal energy flow and flexural energy density plots (Figs. 5b and c)
reveals that SEM presents a characteristic oscillatory behavior, while ESEM presents a smooth behavior
converging to the average values of SEM. This behavior, which was already expected and does not mean a
mismatch, comes from the spatial integration included in the ESEM formulation. However, there is still
the mismatch of longitudinal energy density (Fig. 5a). For frequency bands with a higher center frequency,
e.g., 1/3-octave frequency band with f c ¼ 12:5 kHz (Fig. 6), the results from ESEM and SEM for all energies
match. On the other hand, similar results are obtained for the 1/3-octave frequency band with f c ¼ 4:0 kHz if
the structure’s length is increased to L ¼ 6:0m (Fig. 7).

To obtain quite simple energy flow equations, assumptions and approximations had to be made, which limit
the validity region of the method [12]. Derived from experimental deduction, numerical evaluations, and
experience, some parameters have been proposed to indicate limits of validity of the methods based on energy
formulations. Some of these parameters come from SEA, which uses modal indicators such as mode count,
Nðf Þ, and the modal overlap factor, MOF [1,9]. Other parameters come from approximate solutions for EFA,
such as the energy finite element method (EFEM), which uses wavelength indicators like the nondimensional
wavelength parameter (l), the nondimensional wavenumber band (DkL) and the nondimensional damped
wavenumber band (ZDkL) [3]. Moens [12] showed that modal indicators are related with wavelength indicators
and both can be used to validate SEA and EFEM. Since the ESEM provides an exact solution of the energy
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Fig. 21. Energy flows: partial longitudinal from (a) longitudinal and (c) flexural wave; partial flexural from (b) flexural and

(d) longitudinal wave; total (e) longitudinal and (f) flexural obtained by ( ) ESEM and (—) SEM for the AC branch of three

coupled structure with 60� for a 1/3-octave frequency band with f c ¼ 4:0 kHz.
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flow equation and EFEM an approximate one, it will be conservative to use EFEM validity indicators to
validate the ESEM. To verify the validity region of ESEM, the mode count and the modal overlap factor were
used. The mode count indicates the approximate number of modes excited in the frequency band of interest,
and for longitudinal waves it can be written as

Nðf Þ ¼ 2Dl ¼ 2ðlmax � lminÞ ¼ 2L
1

lmax
�

1

lmin

� �
, (46)

where Dl is the nondimensional wavelength parameter variation, L is the characteristic dimension of the
structure (rod length), and li is the wavelength at the frequency band limits (i ¼ max;min). The modal overlap
factor indicates the spacing between modes in the frequency band of interest and, for longitudinal waves, it
can be expressed by

MOF ¼ 2Zl ¼ 2Z
L

l
, (47)

where l is the largest wavelength in the frequency band of interest. As suggested by Refs. [1,9] the criterion
adopted for the longitudinal and flexural waves was Nðf Þ43:0 and MOF40:5.

Fig. 8 shows the validity region of ESEM for element A as a rod and a beam, calculated by Nðf Þ and MOF

indicators versus center frequency of 1/3-octave frequency bands, f c. These results can explain some
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Fig. 22. Energy densities: partial longitudinal from (a) longitudinal and (c) flexural wave; partial flexural from (b) flexural and

(d) longitudinal wave; total (e) longitudinal and (f) flexural obtained by ( ) ESEM and (—) SEM for the AB branch of three

coupled structure with �60� for a 1/3-octave frequency band with f c ¼ 12:5 kHz.
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mismatches between the energy results from ESEM and SEM. Differences of longitudinal energy density by
ESEM and SEM for the 1/3-octave frequency band with f c ¼ 4:0 kHz stem from the fact that the validity
indicators (Nðf Þ and MOF) for element A as a rod are below the acceptable limit in this frequency band
(Fig. 8). In the frequency band with f c ¼ 12:5 kHz, element A as a rod presents valid indicators (Nðf Þ and
MOF) and a good agreement between ESEM and SEM was found. These results confirm that ESEM performs
as well as SEM, with the upgrade of ESEM yielding smooth results for longitudinal energy flow and flexural
energy densities.

5.2. Collinear coupled elements

Here the structure has free–free boundary conditions (Fig. 3a), and is excited with a harmonic point force at
the left end in the longitudinal and transversal directions, one at a time, with a magnitude of F ¼ 1:0N.
Elements A and B are made of aluminum (E ¼ 71:0GPa and r ¼ 2700 kg=m3) with cross-section areas of
SA ¼ 4� 10�4 m2 and SB ¼ 16� 10�4 m2, lengths LA ¼ LB ¼ 3:0m, and a structural damping loss factor of
Z ¼ 0:03. Frequency-averaged longitudinal and flexural energy densities and energy flows were calculated
using ESEM and SEM over a 1/3-octave frequency band with f c ¼ 4:0 kHz. Fig. 9 indicates that the results
from ESEM and SEM present a similar behavior as the single element case, but with marked difference for
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Fig. 23. Energy flows: partial longitudinal from (a) longitudinal and (c) flexural wave; partial flexural from (b) flexural and

(d) longitudinal wave; total (e) longitudinal and (f) flexural obtained by ( ) ESEM and (—) SEM for the AB branch of three

coupled structure with �60� for a 1/3-octave frequency band with f c ¼ 12:5 kHz.
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longitudinal energy density. By moving to a higher frequency band inside the validity region for this problem,
the results from ESEM and SEM for the longitudinal and flexural energies present better results, with all
energies showing perfect congruence (Fig. 10).

5.3. Coupled elements at arbitrary angle

Fig. 11 shows the configuration for two one-dimensional waveguides connected at an arbitrary angle and
excited at the left end by longitudinal and flexural harmonic forces, one at a time, with a magnitude of
F ¼ 1:0N. The elements are the same A and B as those mentioned in Section 5.2, except that they have equal
cross-section areas SA ¼ SB ¼ 4� 10�4 m2. The frequency-averaged longitudinal and flexural energy densities
and energy flows were calculated using ESEM and SEM for different angles ranging from 0� to 90�, and for
1/3-octave frequency bands with f c ¼ 4:0 and 12.5 kHz, respectively.

For this coupling type, an exchange of energy will occur between the longitudinal and flexural waves at the
joint, and the joint matrix becomes more complicated [3]. To clarify the energy exchange, the total energy of
each wave type is calculated in terms of partial energies and analyzed separately. The total longitudinal energy
density from waveguide A to waveguide B can be written as heLABi ¼ heLLABi þ heLFABi, where heLLABi is the
partial longitudinal energy density due to longitudinal wave traveling from waveguide A to B, and heLFABi is
0 2 4 6
0

0.5

1

1.5

2
x 10−8

<
e L

L
A

C
>

 [
J/

m
]

Position [m]

0 2 4 6
0

0.5

1

1.5

2
x 10−7

<
e F

FA
C

>
 [

J/
m

]

Position [m]

0 2 4 6

Position [m]

0 2 4 6

Position [m]

0 2 4 6

Position [m]

0 2 4 6

Position [m]

0

0.5

1

1.5
x 10−9

<
e L

FA
C

>
 [

J/
m

]

0

1

2

3

4
x 10−9

<
e F

L
A

C
>

 [
J/

m
]

0

0.5

1

1.5

2
x 10−8

<
e L

A
C

>
 [

J/
m

]

0

0.5

1

1.5

2
x 10−7

<
e F

A
C

>
 [

J/
m

]

Fig. 24. Energy densities: partial longitudinal from (a) longitudinal and (c) flexural wave; partial flexural from (b) flexural and

(d) longitudinal wave; total (e) longitudinal and (f) flexural obtained by ( ) ESEM and (—) SEM for the AC branch of three

coupled structure with 60� for a 1/3-octave frequency band with f c ¼ 12:5kHz.
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the partial longitudinal energy density due to flexural wave traveling from waveguide A to B. The same is done
for the total flexural energy density as heFABi ¼ heFFABi þ heFLABi, where heFLABi is the partial flexural energy
density due to longitudinal wave traveling from waveguide A to B, and heFFABi is the partial flexural energy
density due to flexural wave traveling from waveguide A to B. The same concept is used for the energy flow
results. Although the problem has been solved for angles ranging from 0� and 90�, only a typical result for 60�

is presented here. The results of energy density and flow obtained by ESEM and SEM for 1/3-octave frequency
bands with f c ¼ 4:0 kHz are shown in Figs. 12 and 13. As expected, partial and total energy densities and flows
do not match exactly. By shifting to a higher frequency band (f c ¼ 12:5 kHz), inside the validity region for
ESEM, the results present better agreement for the total energy densities and flows (Figs. 14 and 15), but still
show mismatches for some partial energy densities (heLFABi,heFLABi) and flows (hqLFABi,hqFLABi). These partial
energies come from the joint energy exchange between different wave types (longitudinal and flexural). Since
the joint model is formulated as a semi-infinite structural element which has been applied to a finite structure,
these mismatches may come from these approximations. However, in all the cases analyzed here, the
contribution of these partial energies to the total energy is around one to three orders of magnitude lower than
that of the other partial energies, which represents a negligible contribution to the total energy. Fig. 16, which
shows the same results as Fig. 15, gives a more intuitive graphic representation.
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Fig. 25. Energy flows: partial longitudinal from (a) longitudinal and (c) flexural wave; partial flexural from (b) flexural and
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5.4. Branched elements

Fig. 17 shows the configuration for three one-dimensional waveguides connected at arbitrary angles and
excited at the left end by longitudinal and flexural harmonic forces, one at a time, with a magnitude of
F ¼ 1:0N. Elements A, B, and C are of the same dimensions, material, and properties as those used for the
elements in Section 5.3. The frequency-averaged longitudinal and flexural energy densities and energy flow
were calculated using ESEM and SEM for a ¼ f ¼ 60�, and for 1/3-octave frequency bands with f c ¼ 4:0 and
12.5 kHz, respectively.

The results of energy density and flow obtained by ESEM and SEM for a 1/3-octave frequency band with
f c ¼ 4:0 kHz at the AB branch are shown in Figs. 18 and 19, respectively. Similar results for the AC branch are
depicted in Figs. 20 and 21. Except for partial and total flexural energy density (Figs. 18b and f) and partial
and total flexural energy flow (Figs. 19b and f), none of the other energies calculated by ESEM and SEM
exactly match at the AB branch. Similar results were obtained for the AC branch. This behavior was already
expected because the validity indicators (Nðf Þ and MOF) for this structure and frequency band are below
the limits required for ESEM. By rising to a frequency band in which f c ¼ 12:5 kHz, ESEM produces
much better results, which can be confirmed by total energy densities and energy flow results at AB branch
(Figs. 22 and 23), and at AC branch (Figs. 24 and 25), respectively. It should be noted that there are still
mismatches at some partial energies, but because their contribution to the total energy is several orders of
magnitude lower than the others, they do not affect the total energy results.

6. Conclusions

A new method called energy spectral element method (ESEM) is proposed. Predictions made with ESEM
for one-dimensional structures were verified using an exact solution of the wave equation obtained by the
spectral element method (SEM). Different examples were simulated and results obtained by ESEM and SEM
were compared. The configurations treated consist of free–free structures composed of single elements, two
collinear coupled elements, and two and three coupled elements at arbitrary angles. The main divergences
between the energy density and energy flow results obtained with SEM and ESEM stem from the validity
limits of ESEM formulation and coupling relationships in the frequency band of interest. ESEM was shown to
be suitable for high frequencies, and it produces good results when the analyses are performed inside the
validity region for the method, which can be characterized by high mode count (Nðf Þ) and high modal overlap
factor (MOF) indicators. This work reaffirms the importance of Nðf Þ and MOF as indicators that should be
used to establish the limits of validity for energy methods in general and for ESEM in particular. A more
intuitive graphic presentation of the energy density and power flow was introduced.
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